References
Items 1 to 12 of 6099 total
- Valli C et al. (SEP 2008) Molecular cancer therapeutics 7 9 2941--54
Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: significance for the cytotoxic and antiproliferative activity.
Retinoid-related molecules (RRM) are novel agents with tumor-selective cytotoxic/antiproliferative activity, a different mechanism of action from classic retinoids and no cross-resistance with other chemotherapeutics. ST1926 and CD437 are prototypic RRMs, with the former currently undergoing phase I clinical trials. We show here that ST1926, CD437, and active congeners cause DNA damage. Cellular and subcellular COMET assays, H2AX phosphorylation (gamma-H2AX), and scoring of chromosome aberrations indicate that active RRMs produce DNA double-strand breaks (DSB) and chromosomal lesions in NB4, an acute myeloid leukemia (AML) cell line characterized by high sensitivity to RRMs. There is a direct quantitative correlation between the levels of DSBs and the cytotoxic/antiproliferative effects induced by RRMs. NB4.437r blasts, which are selectively resistant to RRMs, do not show any sign of DNA damage after treatment with ST1926, CD437, and analogues. DNA damage is the major mechanism underlying the antileukemic activity of RRMs in NB4 and other AML cell lines. In accordance with the S-phase specificity of the cytotoxic and antiproliferative responses of AML cells to RRMs, increases in DSBs are maximal during the S phase of the cell cycle. Induction of DSBs precedes inhibition of DNA replication and is associated with rapid activation of ataxia telangectasia mutated, ataxia telangectasia RAD3-related, and DNA-dependent protein kinases with subsequent stimulation of the p38 mitogen-activated protein kinase. Inhibition of ataxia telangectasia mutated and DNA-dependent protein kinases reduces phosphorylation of H2AX. Cells defective for homologous recombination are particularly sensitive to ST1926, indicating that this process is important for the protection of cells from the RRM-dependent DNA damage and cytotoxicity. View PublicationCatalog #: Product Name: 72722 CD437 Catalog #: 72722 Product Name: CD437 Kruh J (FEB 1982) Molecular and cellular biochemistry 42 2 65--82Effects of sodium butyrate, a new pharmacological agent, on cells in culture.
Sodium butyrate, at millimolar concentrations, when added to cell cultures produces many morphological and biochemical modifications in a reversible manner. Some of them occur in all cell lines. They concern regulatory mechanisms of gene expression and cell growth: an hyperacetylation of histone resulting from an inhibition of histone deacetylase and an arrest of cell proliferation are almost constantly observed. Some other modifications vary from one cell type to another: induction of proteins, including enzymes, hormones, hemoglobin, inhibition of cell differentiation, reversion of transformed characteristics of cells to normal morphological and biochemical pattern, increase in interferon antiviral efficiency and induction of integrated viruses. Most if not all these effects of butyrate could result from histone hyperacetylation, from changes in chromatin structures as measured by accessibility to DNases and from modifications in cytoskeleton assembly. We do not know at the present time whether butyrate acts on a very specific target site in cell or if it acts on several cell components. View PublicationCatalog #: Product Name: 72242 Sodium Butyrate Catalog #: 72242 Product Name: Sodium Butyrate Mathers AR et al. (JAN 2009) Journal of immunology (Baltimore, Md. : 1950) 182 2 921--33Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses.
Human skin-migratory dendritic cells (DCs) have the ability to prime and bias Th1 and Th2 CD4+ T lymphocytes. However, whether human cutaneous DCs are capable of initiating proinflammatory Th17 responses remains undetermined. We report that skin-migratory DCs stimulate allogeneic naive CD4+ T cells that differentiate simultaneously into two distinct effector Th17 and Th1 populations capable of homing to the skin, where they induce severe cutaneous damage. Skin-migratory Langerhans cells (smiLCs) were the main cutaneous DC subset capable of inducing Th17 responses dependent on the combined effects of IL-15 and stabilized IL-6, which resulted in IL-6 trans-signaling of naive CD4+ T cells. Different from smiLCs, purified skin-migratory dermal DCs did not synthesize IL-15 and were unable to bias Th17 responses. Nevertheless, these dermal DCs were capable of differentiating Th17 cells in mixed leukocyte cultures supplemented with IL-15 and stabilized IL-6. Overall, our data demonstrate that human epidermal smiLCs induce Th17 responses by mechanisms different from those previously described and highlight the need to target clinical treatments based on these variations. View PublicationT. Derakhshan et al. ( 2018) Stem cells international 2018 2136193Development of Human Mast Cells from Hematopoietic Stem Cells within a 3D Collagen Matrix: Effect of Stem Cell Media on Mast Cell Generation.
Mast cells (MCs) arise from hematopoietic stem cells (HSCs) that mature within vascularized tissues. Fibroblasts and endothelial cells (ECs) play a role in the maturation of HSCs in the tissues. Due to difficulties in isolating MCs from tissues, large numbers of committed MC precursors can be generated in 2D culture systems with the use of differentiation factors. Since MCs are tissue-resident cells, the development of a 3D tissue-engineered model with ancillary cells that more closely mimics the 3D in vivo microenvironment has greater relevance for MC studies. The goals of this study were to show that MCs can be derived from HSCs within a 3D matrix and to determine a media to support MCs, fibroblasts, and ECs. The results show that HSCs within a collagen matrix cultured in StemSpan media with serum added at the last week yielded a greater number of c-kit+ cells and a greater amount of histamine granules compared to other media tested. Media supplemented with serum were necessary for EC survival, while fibroblasts survived irrespective of serum with higher cell yields in StemSpan. This work demonstrates the development of functional MCs within a 3D collagen matrix using a stem cell media that supports fibroblast and ECs. View PublicationCatalog #: Product Name: 09600 StemSpan™ SFEM Catalog #: 09600 Product Name: StemSpan™ SFEM Kim T-GG et al. (JUL 2014) Stem Cells 32 7 1789--1804Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation
GABAergic interneurons regulate cortical neural networks by providing inhibitory inputs, and their malfunction, resulting in failure to intricately regulate neural circuit balance, is implicated in brain diseases such as Schizophrenia, Autism, and Epilepsy. During early development, GABAergic interneuron progenitors arise from the ventral telencephalic area such as medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) by the actions of secreted signaling molecules from nearby organizers, and migrate to their target sites where they form local synaptic connections. In this study, using combinatorial and temporal modulation of developmentally relevant dorsoventral and rostrocaudal signaling pathways (SHH, Wnt, and FGF8), we efficiently generated MGE cells from multiple human pluripotent stem cells. Most importantly, modulation of FGF8/FGF19 signaling efficiently directed MGE versus CGE differentiation. Human MGE cells spontaneously differentiated into Lhx6-expressing GABAergic interneurons and showed migratory properties. These human MGE-derived neurons generated GABA, fired action potentials, and displayed robust GABAergic postsynaptic activity. Transplantation into rodent brains results in well-contained neural grafts enriched with GABAergic interneurons that migrate in the host and mature to express somatostatin or parvalbumin. Thus, we propose that signaling modulation recapitulating normal developmental patterns efficiently generate human GABAergic interneurons. This strategy represents a novel tool in regenerative medicine, developmental studies, disease modeling, bioassay, and drug screening. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Pepper J-P et al. (MAY 2017) JAMA facial plastic surgery 19 3 197--205Human Induced Pluripotent Stem Cell-Derived Motor Neuron Transplant for Neuromuscular Atrophy in a Mouse Model of Sciatic Nerve Injury.
Importance Human motor neurons may be reliably derived from induced pluripotent stem cells (iPSCs). In vivo transplant studies of human iPSCs and their cellular derivatives are essential to gauging their clinical utility. Objective To determine whether human iPSC-derived motor neurons can engraft in an immunodeficient mouse model of sciatic nerve injury. Design, Setting, and Subjects This nonblinded interventional study with negative controls was performed at a biomedical research institute using an immunodeficient, transgenic mouse model. Induced pluripotent stem cell-derived motor neurons were cultured and differentiated. Cells were transplanted into 32 immunodeficient mice with sciatic nerve injury aged 6 to 15 weeks. Tissue analysis was performed at predetermined points after the mice were killed humanely. Animal experiments were performed from February 24, 2015, to May 2, 2016, and data were analyzed from April 7, 2015, to May 27, 2016. Interventions Human iPSCs were used to derive motor neurons in vitro before transplant. Main Outcomes and Measures Evidence of engraftment based on immunohistochemical analysis (primary outcome measure); evidence of neurite outgrowth and neuromuscular junction formation (secondary outcome measure); therapeutic effect based on wet muscle mass preservation and/or electrophysiological evidence of nerve and muscle function (exploratory end point). Results In 13 of the 32 mice undergoing the experiment, human iPSC-derived motor neurons successfully engrafted and extended neurites to target denervated muscle. Human iPSC-derived motor neurons reduced denervation-induced muscular atrophy (mean [SD] muscle mass preservation, 54.2% [4.0%]) compared with negative controls (mean [SD] muscle mass preservation, 33.4% [2.3%]) (P = .04). No electrophysiological evidence of muscle recovery was found. Conclusions and Relevance Human iPSC-derived motor neurons may have future use in the treatment of peripheral motor nerve injury, including facial paralysis. Level of Evidence NA. View PublicationCatalog #: Product Name: 85850 mTeSR™1 Catalog #: 85850 Product Name: mTeSR™1 Sauce D et al. (MAY 2011) Blood 117 19 5142--51HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis.
The mechanisms of CD4(+) T-cell count decline, the hallmark of HIV disease progression, and its relationship to elevated levels of immune activation are not fully understood. Massive depletion of CD4(+) T cells occurs during the course of HIV-1 infection, so that maintenance of adequate CD4(+) T-cell levels probably depends primarily on the capacity to renew depleted lymphocytes, that is, the lymphopoiesis. We performed here a comprehensive study of quantitative and qualitative attributes of CD34(+) hematopoietic progenitor cells directly from the blood of a large set of HIV-infected persons compared with uninfected donors, in particular the elderly. Our analyses underline a marked impairment of primary immune resources with the failure to maintain adequate lymphocyte counts. Systemic immune activation emerges as a major correlate of altered lymphopoiesis, which can be partially reversed with prolonged antiretroviral therapy. Importantly, HIV disease progression despite elite control of HIV replication or virologic success on antiretroviral treatment is associated with persistent damage to the lymphopoietic system or exhaustion of lymphopoiesis. These findings highlight the importance of primary hematopoietic resources in HIV pathogenesis and the response to antiretroviral treatments. View PublicationLang J et al. (SEP 2016) Stem cell reports 7 3 341--354Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells.
The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology, partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study, we differentiated human pluripotent stem cells (hPSCs) into hepatocytes, one of the target cells of DENV, to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore, DENV infection activated the NF-$$B pathway, which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions. View PublicationCatalog #: Product Name: 85850 mTeSR™1 Catalog #: 85850 Product Name: mTeSR™1 Heng BC et al. (JUL 2013) Metabolic Engineering 18 9--24MRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient
Induced pluripotent stem cells (iPSC) have successfully been derived from somatic fibroblasts through transfection of synthetic modified mRNA encoding transcription factors. This technique obviates the use of recombinant DNA and viral vectors in cellular reprogramming. The present study derived iPSC from adipose-derived mesenchymal stem cells (of a 50-year-old female patient) by utilizing a similar technique, but with defined culture medium without feeder cells, during both reprogramming and propagation. Clonal selection was performed to yield 12 putative iPSC lines from individual colonies of nascent reprogrammed cells, starting from 150,000 cells. However, only seven lines maintained their undifferentiated state after 10 continuous serial passages. These seven lines were then subjected to a rigorous battery of analyses to confirm their identity as iPSC. These tests included immunostaining, flow cytometry, qRT-PCR, in vitro differentiation assay, and teratoma formation assay within SCID mice. Positive results were consistently observed in all analyses, thus verifying the cells as fully reprogrammed iPSC. While all 7 iPSC lines displayed normal karyogram up to passage 13, chromosomal anomalies occurred in 4 of 7 lines with extended in vitro culture beyond 24 serial passages. Only three lines retained normal karyotype of 46,XX. The remaining four lines displayed mosaicism of normal and abnormal karyotypes. Hence, this study successfully derived iPSC from abundant and easily accessible adipose tissues of a middle-aged patient; utilizing a mRNA-based integration-free technique under feeder-free conditions. This is a step forward in translating iPSC into personalized regenerative medicine within the clinic. ?? 2013 Elsevier Inc. View PublicationCatalog #: Product Name: 85850 mTeSR™1 Catalog #: 85850 Product Name: mTeSR™1 Briggs SF et al. (JUN 2015) Stem Cells 33 6 1771--1781Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells.
The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well-understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4-cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells. View PublicationCatalog #: Product Name: 85850 mTeSR™1 Catalog #: 85850 Product Name: mTeSR™1 Naujok O et al. ( 2015) 1341 67--85Gene transfer into pluripotent stem cells via lentiviral transduction
Recombinant lentiviral vectors are powerful tools to stably manipulate human pluripotent stem cells. They can be used to deliver ectopic genes, shRNAs, miRNAs, or any possible genetic DNA sequence into diving and nondividing cells. Here we describe a general protocol for the production of self-inactivating lentiviral vector particles and their purification to high titers by either ultracentrifugation or ultrafiltration. Next we provide a basic procedure to transduce human pluripotent stem cells and propagate clonal cell lines. View PublicationCatalog #: Product Name: 85850 mTeSR™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Kaabinejadian S et al. (MAY 2016) The Journal of Immunology 196 10 4263--73Immunodominant West Nile virus T cell epitopes are fewer in number and fashionably late
Class I HLA molecules mark infected cells for immune targeting by presenting pathogen-encoded peptides on the cell surface. Characterization of viral peptides unique to infected cells is important for understanding CD8(+) T cell responses and for the development of T cell-based immunotherapies. Having previously reported a series of West Nile virus (WNV) epitopes that are naturally presented by HLA-A*02:01, in this study we generated TCR mimic (TCRm) mAbs to three of these peptide/HLA complexes-the immunodominant SVG9 (E protein), the subdominant SLF9 (NS4B protein), and the immunorecessive YTM9 (NS3 protein)-and used these TCRm mAbs to stain WNV-infected cell lines and primary APCs. TCRm staining of WNV-infected cells demonstrated that the immunorecessive YTM9 appeared several hours earlier and at 5- to 10-fold greater density than the more immunogenic SLF9 and SVG9 ligands, respectively. Moreover, staining following inhibition of the TAP demonstrated that all three viral ligands were presented in a TAP-dependent manner despite originating from different cellular compartments. To our knowledge, this study represents the first use of TCRm mAbs to define the kinetics and magnitude of HLA presentation for a series of epitopes encoded by one virus, and the results depict a pattern whereby individual epitopes differ considerably in abundance and availability. The observations that immunodominant ligands can be found at lower levels and at later time points after infection suggest that a reevaluation of the factors that combine to shape T cell reactivity may be warranted. View PublicationCatalog #: Product Name: 03802 ClonaCell™-HY Medium B 03801 ClonaCell™-HY Medium A 03803 ClonaCell™-HY Medium C 03804 ClonaCell™-HY Medium D 03805 ClonaCell™-HY Medium E 03806 ClonaCell™-HY PEG 03800 ClonaCell™-HY Hybridoma Kit Catalog #: 03802 Product Name: ClonaCell™-HY Medium B Catalog #: 03801 Product Name: ClonaCell™-HY Medium A Catalog #: 03803 Product Name: ClonaCell™-HY Medium C Catalog #: 03804 Product Name: ClonaCell™-HY Medium D Catalog #: 03805 Product Name: ClonaCell™-HY Medium E Catalog #: 03806 Product Name: ClonaCell™-HY PEG Catalog #: 03800 Product Name: ClonaCell™-HY Hybridoma Kit Items 1 to 12 of 6099 total
Shop ByFilter Results- Resource Type
-
- Reference 6063 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 732 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 186 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 81 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 750 items
- EpiCult 13 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 127 items
- Lymphoprep 26 items
- MammoCult 13 items
- MegaCult 36 items
- MesenCult 133 items
- MethoCult 483 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 360 items
- NeuroFluor 1 item
- PancreaCult 1 item
- PneumaCult 78 items
- RSeT 6 items
- RoboSep 64 items
- RosetteSep 275 items
- STEMdiff 65 items
- STEMvision 9 items
- SepMate 45 items
- StemSpan 291 items
- TeSR 1580 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 766 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 106 items
- Mononuclear Cells 32 items
- Myeloid Cells 100 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2024 by STEMCELL Technologies. All rights reserved.