Column-free methods for the rapid isolation of highly purified, functional and expandable human regulatory T cells

Andy I. Kokaji, G. Neill MacDonald, Terry Thomas, and Maureen Fairhurst
STEMCELL Technologies Inc., Vancouver, Canada.

Abstract
Regulatory T cells (Tregs) are a specialized subset of T cells that play a key role in peripheral tolerance and immune regulation. However, the current methods of purifying Tregs are labor-intensive and time-consuming. Here we describe a novel method that allows for the rapid and efficient isolation of highly functional Tregs from whole blood samples. The method is based on an antigen-specific magnetic depletion and positive selection strategy. Briefly, whole blood samples are incubated with anti-CD25 magnetic beads, which bind to the CD25 molecules on Tregs. The mixture is then passed through a magnetic column, allowing the Tregs to be enriched while leaving the other immune cells behind. The remaining immune cells are then depleted using anti-CD4 and anti-CD8 antibodies.

Conclusions
- Human regulatory T cells can be isolated from whole blood in less than 3 hours using a combination of RosetteSep[®] and EasySep[®] technology.
- Highly enriched human regulatory T cells can be rapidly isolated from PBMCs using the manual EasySep[®] or the fully automated RosoEasy[®] system.
- Unfractionated CD4⁺CD25⁺ Tregs can be isolated from PBMCs in one hour using EasySep[®] or RosoEasy[®].
- Pre-enrichment of Tregs using RosetteSep[®] or EasySep[®] can significantly reduce flow sorting time for isolating human regulatory T cells from whole blood.
- Human regulatory T cells isolated using RosetteSep[®] and EasySep[®] can suppress T cell proliferation and can be expanded in vitro while maintaining their functionality.

Methods
FIGURE 1: RosetteSep[®] and EasySep[®] labeling of cells

FIGURE 2: Significant time savings using RosetteSep[®] and EasySep[®]

A. Starting with whole blood or buffy coats
B. Starting with PBMCs

FIGURE 3: Human regulatory T cell isolation starting with whole blood or buffy coats using RosetteSep[®] and EasySep[®]

A. RosetteSep[®] iEDT T cell pre-enrichment
B. EasySep[®] CD4⁺ position selection

FIGURE 4: Human regulatory T cell isolation starting with PBMCs using EasySep[®]

A. EasySep[®] CD4⁺ pre-enrichment
B. EasySep[®] CD4⁺ position selection

FIGURE 5: Untouched human regulatory T cells starting with PBMCs using EasySep[®]

A. EasySep[®] CD4⁺CD127⁺CD25⁺ T cell negative enrichment

FIGURE 6: Reduce flow sorting time by pre-enriching human regulatory T cells from whole blood, buffy coats, or PBMCs

A. Starting with whole blood or buffy coats
B. Starting with PBMCs

Results
FIGURE 7: Purity and phenotype of human regulatory T cell isolates using RosetteSep[®] and EasySep[®]

A. CD4⁺ T cell pre-enrichment
B. CD4⁺CD25⁺ T cell
C. CD4⁺CD127⁺CD25⁺ T cell pre-enrichment
D. CD4⁺CD127⁺CD25⁺ T cell

FIGURE 8: Purity and phenotype of human regulatory T cells isolated from PBMC using RosoEasy[®]

A. CD4⁺ T cell pre-enrichment
B. CD4⁺CD25⁺ T cell
C. CD4⁺CD127⁺CD25⁺ T cell pre-enrichment
D. CD4⁺CD127⁺CD25⁺ T cell

FIGURE 9: Purity and phenotype of untouched human regulatory T cells isolated using EasySep[®]

A. PBMCs
B. CD4⁺CD127⁺CD25⁺ T cell

FIGURE 10: Isolated human regulatory T cells can be expanded in vitro while maintaining their functionality

The ability of isolated human regulatory T cells to suppress and expand in vitro upon culture was assessed. Human Tregs were expanded from whole blood using RosoEasy[®] followed by EasySep[®] CD4⁺CD25⁺ positive selection. Tregs were then cocultured with non-Treg cells. Proliferation assays were performed using a 5-day pulse of [3H]-thymidine. HLA and TCR expression was confirmed on day 5.