Puromycin is an aminonucleoside antibiotic derived from Streptomyces alboniger that acts as a protein synthesis inhibitor. It binds to the target ribosome site A, where it is transferred to the growing polypeptide chain causing premature chain termination (Azzam & Algranati; Lührmann et al.; Rodriguez-Fonseca et al.). A biologically inactive form is generated when Puromycin is N-acetylated by puromycin-N-acetyltransferase, allowing this gene to be used as a selective resistance marker (Vara et al.).

Structure:

Puromycin (Dihydrochloride)

Chemical Name: (2S)-2-amino-N-[(2S,4R,5R)-5-[6-(dimethylamino)purin-9-yl]-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]-3-(4-methoxyphenyl)propanamide; dihydrochloride

Molecular Name: Puromycin (Dihydrochloride)

CAS Number: 58-58-2

Chemical Formula: C_{22}H_{29}N_{7}O_{5}·2HCl

Molecular Weight: 544.4 g/mol

Purity: ≥ 98%

Chemical Name: (2S)-2-amino-N-[(2S,4R,5R)-5-[6-(dimethylamino)purin-9-yl]-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]-3-(4-methoxyphenyl)propanamide; dihydrochloride

Properties

Physical Appearance: A crystalline solid

Storage:
Product stable at -20°C as supplied. Protect from prolonged exposure to light.
Stable as supplied for 12 months from date of receipt.

Solubility:
- PBS (pH 7.2) ≤ 15 mM
- DMSO ≤ 20 mM
- Absolute ethanol ≤ 1.5 mM

For example, to prepare a 10 mM stock solution in PBS, resuspend 50 mg in 9.18 mL of PBS (pH 7.2).

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

CELL LINE DEVELOPMENT
· Selects for cells expressing puromycin-N-acetyltransferase resistance gene as a research tool (de la Luna & Ortín; Iwaki et al.).
· Useful in CRISPR/Cas9 mammalian gene editing by selecting for successful Cas9-induced knock-in with puromycin resistance gene (Park et al.).

CANCER RESEARCH
· Possesses anti-tumor activity when tested against numerous cell lines (Foley & Eagle).

References

Related Small Molecules

For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

This product is hazardous. Please refer to the Safety Data Sheet (SDS).