Paclitaxel is a diterpene alkaloid originally isolated from the bark of the Pacific Yew tree (Taxus brevifolia). It binds to and stabilizes microtubules, preventing their reorganization during cell division, which leads to cell cycle arrest. Paclitaxel has antitumorigenic properties and has been used as a chemotherapeutic compound (Rowinsky et al.). Many pathways have been implicated in Paclitaxel-induced apoptosis, including c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), p38 mitogen-activated protein kinase (MAPK), and protein kinase A (PKA; Wang et al.; Reshkin et al.).

Chemical Name: (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-Dodecahydro-4,6,9,11,12,12b-hexahydroxy-4a,8,13,13-tetramethyl-7,11-methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one 6,12b-diacetate, 12-benzoate, 9-ester with (2R,3S)-N-benzoyl-3-phenylisoserine

Molecular Name: Paclitaxel

Alternative Names: NSC 125973, Taxol™

CAS Number: 33069-62-4

Chemical Formula: C_{47}H_{51}NO_{14}

Molecular Weight: 853.9 g/mol

Purity: ≥ 98%

Chemical Name: 33069-62-4

Molecular Name: NSC 125973, Taxol™

CAS Number: 33069-62-4

Chemical Formula: C_{47}H_{51}NO_{14}

Molecular Weight: 853.9 g/mol

Purity: ≥ 98%

Chemical Name: (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-Dodecahydro-4,6,9,11,12,12b-hexahydroxy-4a,8,13,13-tetramethyl-7,11-methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one 6,12b-diacetate, 12-benzoate, 9-ester with (2R,3S)-N-benzoyl-3-phenylisoserine

Physical Appearance: A crystalline solid

Storage: Product stable at -20°C as supplied. Protect from prolonged exposure to light. For product expiry date, please contact techsupport@stemcell.com.

Solubility:
- DMSO ≤ 5 mM
- Absolute ethanol ≤ 1.5 mM

For example, to prepare a 1 mM stock solution in DMSO, resuspend 10 mg in 11.7 mL of DMSO.

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

DIFFERENTIATION
- Inhibits initiation and outgrowth of neurites in vitro, through microtubule polymerization (Letourneau & Ressler).

CANCER RESEARCH
- Inhibits tumor cell growth in a variety of cancer cell lines including cervical (HeLa), lung (A549), breast (MCF-7), colon (HT-29), ovarian (OVG-1), and pancreatic (PC-Sh) carcinomas (Liebmann et al.).
- Induces abnormal multipolar spindle formation, inducing cell cycle arrest at prophase and G1 in various human cell cancer lines (Woods et al.).
- Initiates apoptosis of cancer cells through multiple mechanisms involving: p53-dependent and -independent pathways, B-cell CLL/lymphoma 2 (BCL-2) family members, cyclin-dependent kinases, p38 MAPK, PKA, and JNK/SAPK (Wang et al.; Reshkin et al.).
- Induces cyclin inhibitor p21 in MCF7 and PC3M human cancer cell lines by a mechanism dependent on the activation of RAF-1 (Blagosklonny et al.).

References

Related Small Molecules
For a complete list of small molecules available from STEMCELL Technologies, please visit our website at www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

This product is hazardous. Please refer to the Safety Data Sheet (SDS).