TTNPB is an analog of retinoic acid that potently and selectively activates retinoic acid receptors (RAR; EC$_{50}$ = 21, 4, and 2.4 nM for RARα, RARβ, and RARγ, respectively; Beard et al.; Wong et al.). It does not act on retinoid X receptors and weakly agonizes farnesoid X receptor (EC$_{50}$ > 1 µM; Maloney et al.; Wong et al.). TTNPB is used to study RAR action in diverse processes, including epidermal cell proliferation, embryogenesis, and stem cell differentiation (Araoka et al.; Hou et al.; Minucci et al.; Thacher et al.).

Product Description

TTNPB is a crystalline solid.

Storage:
Product stable at -20°C as supplied. Protect from prolonged exposure to light. Stable as supplied for 12 months from date of receipt.

Solubility:
- Absolute ethanol ≤ 280 µM
- DMSO ≤ 5.7 mM

For example, to prepare a 1 mM stock solution in DMSO, resuspend 1 mg in 2.86 mL of fresh DMSO.

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

REPROGRAMMING
- Enables chemical reprogramming (without genetic factors) of mouse embryonic fibroblasts to induced pluripotent stem cells, in combination with CHIR99021 (Catalog #72052), Tranylcypromine (72272), Valproic Acid (Catalog #72292), 3-Deazaneplanocin A (Catalog #72322), and RepSox (Catalog #73792) (Hou et al.).

DIFFERENTIATION
- In combination with CHIR99021 or Activin A (Catalog #78001), induces intermediate mesoderm formation from human or mouse pluripotent stem cells, respectively (Araoka et al.; Oeda et al.).
- Promotes neuronal differentiation in cultured chick caudal neural plate explants (Diez del Corral et al.).

CANCER RESEARCH
- Induces the in vitro growth and differentiation to granulocytes of myeloid progenitor cells isolated from myelodysplastic syndrome (MDS) patients (Fabian et al.).

References

Related Small Molecules

For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

This product is hazardous. Please refer to the Safety Data Sheet (SDS).

Copyright © 2017 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, and Scientists Helping Scientists are trademarks of STEMCELL Technologies Canada Inc. All other trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.