Product Description

Raloxifene modulates estrogen receptor (ER) activity. It is a selective estrogen receptor modulator (SERM) that exhibits agonistic (estrogenic) activity in bone cells without stimulating ER activity in breast or uterine tissues (Black et al.). This product is supplied as the hydrochloride salt of the molecule.

Molecular Name: Raloxifene (Hydrochloride)

Alternative Names: Keoxifene; LY156758

CAS Number: 82640-04-8

Chemical Formula: C₂₈H₂₇NO₄S · HCl

Molecular Weight: 510.2 g/mol

Purity: ≥ 98%

Chemical Name: 6-Hydroxy-2-(p-hydroxyphenyl)benzo[b]thien-3-yl-p-(2-piperidinoethoxy)phenyl ketone hydrochloride

Structure:

![Chemical Structure of Raloxifene](image)

Properties

Physical Appearance: A crystalline solid

Storage:

Product stable at -20°C as supplied. Protect from prolonged exposure to light.

Stable as supplied for 12 months from date of receipt.

Solubility:

- Absolute ethanol ≤ 190 µM
- DMSO ≤ 19 mM

For example, to prepare a 10 mM stock solution in DMSO, resuspend 10 mg in 1.96 mL of fresh DMSO.

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

DIFFERENTIATION
- Enhances osteoblast differentiation in mouse bone marrow and human osteoblast cultures (Qu et al.; Viereck et al.).
- Inhibits osteoclast differentiation in primary human bone marrow mononuclear cell cultures (Ramalho et al.).
- Reduces endodermal differentiation (HNF-4α expression) in embryoid bodies derived from human embryonic stem cells (Kim et al.).

References

Related Small Molecules
For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

This product is hazardous. Please refer to the Safety Data Sheet (SDS).