Product Description

DAPT is an inhibitor of the γ-secretase complex. Notch is a key target of γ-secretase, therefore DAPT indirectly inhibits the Notch pathway. Other targets of γ-secretase that would be influenced by DAPT include amyloid precursor protein, E-cadherin, and ErbB4 (Dovey et al.).

Molecular Name: DAPT
Alternative Names: GSI-IX; LY-374973
CAS Number: 208255-80-5
Chemical Formula: C₃₃H₆₆F₂N₂O₄
Molecular Weight: 432.5 g/mol
Purity: ≥ 95%
Chemical Name: N-[2S-(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl-1,1-dimethylethyl ester-glycine

Structure:

![DAPT Structure](attachment:image.png)

Properties

Physical Appearance: A crystalline solid
Storage: Product stable at -20°C as supplied. Protect from prolonged exposure to light. Stable as supplied for 12 months from date of receipt.
Solubility:
· Absolute ethanol ≤ 2.3 mM
· DMSO ≤ 55 mM
For example, to prepare a 10 mM stock solution in DMSO, resuspend 5 mg in 1.16 mL of DMSO. Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

MAINTENANCE AND SELF-RENEWAL
· Reduces colony-forming efficiency of mouse neural stem cells (Androutsellis-Theotokis et al.).
· Enhances radiation-induced cell death of glioma stem cells (Wang et al.).

DIFFERENTIATION
· Promotes differentiation of nociceptors from human pluripotent stem cells, in combination with several other small molecules (Chambers et al.).
· Promotes differentiation of neurons from human and mouse embryonic stem (ES) cells (Crawford & Roelink; Elkabetz et al.).
· Promotes differentiation of retinal pigment epithelium from mouse ES cells (Osakada et al.).
· Promotes differentiation of pancreatic cells from human pluripotent stem cells (D’Amour et al.).

CANCER RESEARCH
· Reduces mammosphere-forming efficiency of breast cancer cell lines and ductal carcinoma in situ cells (Farnie et al.; Harrison et al.).

References

Related Small Molecules

For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.