All-Trans Retinoic Acid

Retinoid pathway activator; Activates retinoic acid receptor (RAR)

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>72262</td>
<td>50 mg</td>
</tr>
<tr>
<td>72264</td>
<td>500 mg</td>
</tr>
<tr>
<td>100-1045</td>
<td>5 g</td>
</tr>
</tbody>
</table>

Product Description

All-Trans Retinoic Acid is a derivative of Vitamin A that functions as a ligand for the retinoic acid receptor (RAR; IC_{50} = 14 nM). These receptors heterodimerize with retinoid X receptors (RXRs) and bind to retinoic acid response elements (RAREs) in DNA where they act as transcription factors, altering gene expression (Apfel et al.; Chambon).

Molecular Name: All-Trans Retinoic Acid

Alternative Names: ATRA; NSC 122758; Retinoic acid; Trans retinoic acid; Tretinoin; Vitamin A acid

CAS Number: 302-79-4

Chemical Formula: C_{20}H_{28}O_{2}

Molecular Weight: 300.4 g/mol

Purity: ≥ 98%

Chemical Name: Not applicable

Physical Appearance: A crystalline solid

Storage: Product stable at -20°C as supplied. Protect from prolonged exposure to light. Stable as supplied for 12 months from date of receipt.

Solubility:
- DMSO ≤ 65 mM
- Absolute ethanol ≤ 2 mM

For example, to prepare a 10 mM stock solution in DMSO, resuspend 10 mg in 3.33 mL of fresh DMSO.

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.
Published Applications

DIFFERENTIATION
- Promotes differentiation of motor neurons from mouse and human pluripotent stem cells (Dimos et al.; Wichterle et al.).
- Promotes differentiation of neurons from neural stem cells (Takahashi et al.).
- Promotes differentiation of pancreatic progenitors from human embryonic stem (ES) cells (D’Amour et al.).
- Promotes differentiation of adipocytes from mouse ES cells (Dani et al.).
- Promotes differentiation of ventricular cardiomyocytes from mouse ES cells (Wobus et al.).
- Promotes terminal differentiation of granulocytes (Collins).

CANCER RESEARCH
- Promotes maturation of blast cells in differentiation therapy of acute promyelocytic leukemia (Huang et al.).

References

Related Small Molecules

For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

This product is hazardous. Please refer to the Safety Data Sheet (SDS).

PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.

Copyright © 2022 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, and Scientists Helping Scientists are trademarks of STEMCELL Technologies Canada Inc. All other trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.