Products for Mouse Pluripotent Stem Cells

Table of **Contents**

3 Introduction

- 4 Morphology of Undifferentiated mES Cells
- 5 Maintenance of Undifferentiated mES & miPS Cells
- 6 Mouse Embryonic Fibroblasts (MEFs) for Maintenance of mES & miPS Cells
- 6 Additional Pre-Screened Products for Maintenance of mES & miPS Cells
- 7 Characterization Products for mES & miPS Cells
- **8** Formation of Uniform Embryoid Bodies
- **9** Tissue Culture Reagents and Supplies
- **10** Selected References

Mouse Pluripotent Stem Cells

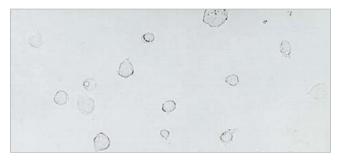
Products for Research

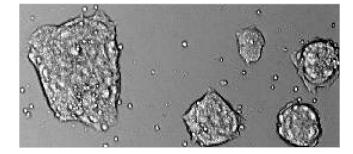
Introduction

Mouse embryonic stem (mES) cells are pluripotent cells derived from the inner cell mass of early blastocysts. They can be maintained in vitro for extended periods without loss of their capacity to contribute to all cell lineages when reimplanted back into a recipient blastocyst.¹⁻³ The pluripotency of mES cells, combined with their ease of genetic manipulation and selection, has revolutionized gene function in vivo through the generation of transgenic mice.⁴⁻⁹

In the fields of regenerative medicine and developmental biology, mES cells serve as a useful model system to investigate the genetic and epigenetic changes that take place during development.¹⁰⁻¹³

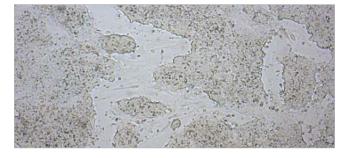
The discovery that it is possible to reprogram somatic cells into induced pluripotent stem (iPS) cells by overexpressing a small number of genes either through viral infection or by stimulation with small molecules, or both, has stimulated much interest in investigating the mechanisms responsible for this phenomena including various genetic and epigenetic changes that take place during this process.¹⁴⁻¹⁷ To date, these cells have been shown to be functionally indistinguishable from mES cells and are the subject of much research effort.



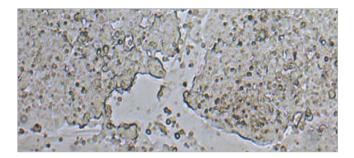

Morphology of Undifferentiated Mouse Embryonic Stem Cells

Undifferentiated mouse embryonic stem (mES) cells have a large nucleus, minimal cytoplasm, and one or more prominent dark nucleoli. It should be difficult to identify individual cells within the mES cell colony, as there are non-distinct cytoplasmic membranes between the cells. Colonies appear amorphous without a distinct or common shape. Signs of differentiation include the ability to distinguish individual cells within the mES cell colony by the defined cytoplasmic membrane for the cells. The colony may appear to spread and cells appear flattened. Cells may lift off the dish.

Undifferentiated mES Cells


Colonies are dense with distinct, tight borders, and individual cells are not visible. Colonies are not touching one another.

Differentiated mES Cells on MEFs


Colonies are merging, and have lost border integrity.

Differentiated mES Cells on Gelatin

Colonies are merging, and have lost border integrity.

Maintenance of Undifferentiated mES & miPS cells

Mouse Recombinant LIF

Mouse Recombinant Leukemia Inhibitory Factor (LIF, Catalog #78056) is an interleukin 6 class cytokine that regulates a broad variety of developmental functions. It is recommended for the maintenance of mES cells.

COMPLETE mES & miPS CELL MAINTENANCE MEDIUM*				
Product	DES cellription	Quantity	Catalog #	
Mouse Recombinant Leukemia Inhibitory Factor (mLIF)	Recommended for the maintenance of undifferentiated mES cells.	10 µg 50 µg 1000 µg	78056.1 78056 78056.2	
DMEM with high glucose	Dulbecco's Modified Eagle's Medium with 4500 mg D-glucose/L. Contains sodium bicarbonate and sodium pyruvate.	500 mL	36250	
MEM Non-Essential Amino Acids (10 mM)	Culture medium supplement for the maintenance of mES cells, supplied as 100X concentrated.	1000 µg	07600	
L-Glutamine (200 mM)	Culture medium supplement for the maintenance of mES cells.	100 mL	07100	

*Components essential for the preparation of complete mES & miPS cell maintenance medium are available as pre-screened ES-Cult™ products from STEMCELL Technologies. In addition to the products listed above, complete mES & miPS cell maintenance medium also requires monothioglycerol (e.g. Sigma #M6145) in a 1/100 working solution in DMEM (Catalog #36250) to a final concentration of 100 µM and fetal bovine serum pre-screened for the maintenance of mES and miPS cells.

Mouse Embryonic Fibroblasts (MEFs)

For Maintenance of mES & miPS Cells

CD-1 MEFs

Product	Passage	Day	Cell Number/Vial	Catalog #
CD-1 MEFs	2	E12.5	1 X 10 ⁶	00321
CD-T IVIEFS	2	E14.5	1 X 10 ⁶	00322

RECOMMENDED FOR:

The generation of feeder layers for the maintenance of undifferentiated mouse ES and iPS cells. Untreated MEFs must be mitotically inactivated by irradiation or mitomycin C treatment prior to forming feeder layers. MEFs are prepared from day E12.5 or E14.5 CD-1 mouse embryos, supplied at passage 2 and can be expanded up to passage 5. Each vial contains 1 x 10⁶ cells in DMEM with 50% fetal bovine serum and 10% dimethyl sulfoxide.

Selective Agents

Product	Quantity	Catalog #
G418	250 mg	03812
Hygromycin B	100 mg	03813
Puromycin	50 mg 500 mg	73342 73344

Mouse Recombinant Leukemia Inhibitory Factor (LIF, Catalog #78056) is an interleukin 6 class cytokine that regulates a broad variety of developmental functions. It is recommended for the differentiation of mES cells.

Drug-Resistant MEFs

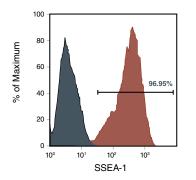
Product	Passage	Day	Cell Number/Vial	Catalog #
Neomycin- Resistant MEFs	1	E13.5	3 X 10 ⁶	00323
Hygromycin- Resistant MEFs	1	E13.5	3 X 10 ⁶	00324
Puromycin- Resistant MEFs	2	E13.5	3 X 10 ⁶	00325

RECOMMENDED FOR:

The generation of drug-resistant feeder layers for the culture and selection of transfected undifferentiated ES cells. MEFs and targeted ES cells can be co-cultured using neomycin/ G418, hygromycin or puromycin as a selective agent with the appropriate MEFs.

MEFs are isolated from day E13.5 drug-resistant mouse embryos, supplied at passage 1 or 2 and can be expanded up to passage 5. They must be mitotically inactivated by irradiation or mitomycin C treatment prior to forming feeder layers for ES cells. Each vial contains greater than 3×10^6 cells in 95% fetal bovine serum and 5% dimethyl sulfoxide.

Additional Pre-Screened Products For Maintenance of Mouse ES & iPS Cells


PRODUCT	DES CELLRIPTION	QUANTITY	CATALOG #
Gelatin (0.1% in water)	Recommended for the coating of culture dishes or flasks.	500 mL	07903
Sodium Pyruvate (100 mM)	Only recommended to be added to mouse ES cell maintenance medium when ES-Cult [™] DMEM high glucose medium (Catalog #36250) is NOT used.	100 mL	07000
Bone Morphogenetic Protein-4 (BMP-4)	Used together with mLIF to promote mouse ES cell self-renewal in serum-free medium. BMP-4 is also recommended for inducing hematopoietic activity and promoting hematopoietic precursor development during EB formation and in vitro mouse ES cell differentiation.	10 µg	02524
D-PBS without Ca ⁺⁺ and Mg ⁺⁺	Dulbecco's Phosphate Buffered Saline without Ca ⁺⁺ and Mg ⁺⁺ for rinsing mouse ES cell cultures prior to passage.	500 mL	37350
Trypsin-EDTA	0.25% Porcine Trypsin and 1 mM EDTA•4Na in Hanks' Balanced Salt Solution (Ca ⁺⁺ and Mg ⁺⁺ free). Recommended for detachment of adherent cells and dissociation of embryoid bodies.	500 mL	07901
Tissue Culture-Treated Dishes	Pre-tested for the ability to support the growth of anchorage-dependent cells. Available in 35 mm, 60 mm, and 100 mm formats.	500 Dishes	38046
Trypan Blue	0.4% in PBS. Recommended for viable cell counting.	100 mL	07050

Characterization Products for mES & miPS Cells

Undifferentiated mES and miPS cells express high levels of OCT4 (OCT3) and SSEA-1 and begin to express SSEA-3 upon differentiation. Primary and appropriate secondary antibodies are available for detection of OCT4 (OCT 3), SSEA-1, SSEA-3 and SSEA-4.

PRIMARY ANTIBODIES				
Target Antigen	Clone	lsotype	Catalog #	
OCT4 (OCT3)	40	Mouse IgG1	60059	
SSEA-1 (CD15)	MC-480	Mouse IgM	60060	
SSEA-3	MC-631	Rat lgM	60061	
SSEA-4	MC-813-70	Mouse IgG3	60062	

SECONDARY ANTIBODIES				
Target Antigen	Host Species	Format	For Use With	Catalog #
Mouse IgG	Goat	FITC	Anti-OCT4 (OCT3)	60138FI
Mouse IgM	Goat	FITC	Anti-SSEA-1 (CD15)	60139FI
Rat IgM	Goat	АРС	Anti-Mouse SSEA-3 Antibody, Clone MC-631	60140AZ

Unstained mES cells

mES cells stained with (mouse IgM) anti-SSEA-1 & (goat-anti-mouse) anti-IgM FITC

Figure 1. mES cells cultured in pre-screened ES-Cult[™] reagents for maintenance were stained with Anti-Mouse SSEA-1 (CD15) Antibody, Clone MC-480 (Catalog #60060) and Goat Anti-Mouse IgM (Heavy Chain) Antibody, Polyclonal, FITC (Catalog 60139FI).

For a complete list of antibodies, including other conjugates, sizes and clones, please visit www.stemcell.com/antibodies.

Formation of Uniform **Embryoid Bodies**

Many pluripotent stem cell (PSC) differentiation protocols begin with the formation of 3-dimensional aggregates of cells called embryoid bodies (EBs). EB size affects subsequent differentiation trajectories, but conventional EB formation methods, such as scraping, can result in EBs which are heterogeneous in size and shape, leading to inefficient and uncontrolled differentiation.

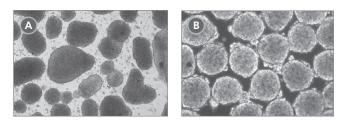


FIGURE 2. Generate Uniform Embryoid Bodies Using AggreWell™

(A) EBs formed using conventional methods are heterogeneous in size and shape resulting in inefficient differentiation. (B) EBs formed using AggreWell™ plates are uniform in size and consistently spherical in shape. Shown are EBs generated with 2,000 cells using AggreWell™400.

AggreWell[™] plates are available in 2 sizes of microwells and multiple plate formats to fit your research needs.

For protocols which require defined EB size, we offer AggreWell[™] plates, and for protocols which use semi-solid methylcellulose-based medium, we offer ES-Cult[™] M3120.

1. AggreWell[™]

AggreWell[™] plates contain microwells of defined size, providing an easy and standardized approach for the formation of sizecontrolled EBs. AggreWell[™]400 plates have microwells 400 µm in size, and AggreWell[™]800 plates have microwells 800 µm in size. Size of the EBs can be controlled by modifying the cell input density.

2. ES-Cult[™] M3120 Base Methylcellulose Medium

Methods to support the differentiation of mES and miPS cells to either hematopoietic or endothelial cells involve the formation of EBs which have been derived from a single undifferentiated cell. ES-Cult™ M3120 (Catalog #03120) is a methylcellulose-based semi-solid medium which allows the progeny of individual cells to remain together. With the addition of appropriate cytokines, the resulting EBs will become either hematopoietic or endothelial cells. This method can also be used as a surrogate assay to show the number of undifferentiated cells in a culture.¹⁸

PRODUCT	MICROWELL SIZE	CELL RANGE	PLATE FORMAT	NUMBER OF SPHEROIDS	CATALOG #
	400 um	50 - 3,000 cells per	24-well plate	~ 1,200 per well	34411/34415
AggreWell™400	400 µm	400 µm spheroid	6-well plate	~ 7,000 per well	34421/34425
	200 um	3,000 - 20,000 cells	24-well plate	~ 300 per well	34811/34815
AggreWell™800	800 µm	per spheroid	6-well plate	~ 1,800 per well	34821/34825

Note: AggreWell™ Rinsing Solution (Catalog #07010) is required for use with AggreWell™ plates to ensure optimal performance.

Tissue Culture Reagents & Supplies

MISCELLANEOUS TISSUE CULTURE REAGENTS AND SUPPLIES			
PRODUCT NAME	CATALOG #	QUANTITY	
3% Acetic Acid with Methylene Blue	07060	100 mL	
Collagen Solution	04902	35 mL	
Fibronectin	07159	1 mL	
Gelatin	07903	500 mL	
Hypoxia Chamber	27310	1 Chamber	
Rat Serum	13551 13561	2 mL 10 mL	
Sodium Pyruvate	07000	100 mL	
Trypan Blue	07050	100 mL	

TISSUE CULTURE DISHES				
PRODUCT NAME	CATALOG #	QUANTITY		
35 mm diameter	27115 27116	10/pack 500/case		
60 mm diameter	27120 27121	10/pack 400/case		
100 mm diameter	27125 27127	10/pack 240/case		
245 mm x 245 mm	38039 100-0084	4/pack 16/case		
96-well plates	27135 27136	1/pack 50/case		

ANTIBIOTICS		
PRODUCT NAME	CATALOG #	QUANTITY
Neomycin (G418)	03812	250 mg
Hygromycin	03813	100 mg
Duromucin	73342	50 mg
Puromycin	73344	500 mg

TISSUE CULTURE MEDIA

PRODUCT NAME	CATALOG #	QUANTITY
DMEM with 4500 mg/L D-glucose	36250	500 mL
DMEM with 1000 mg/L D-glucose	36253	500 mL
DMEM/F-12	36254	500 mL
lscove's MDM (IMDM)	36150	500 mL

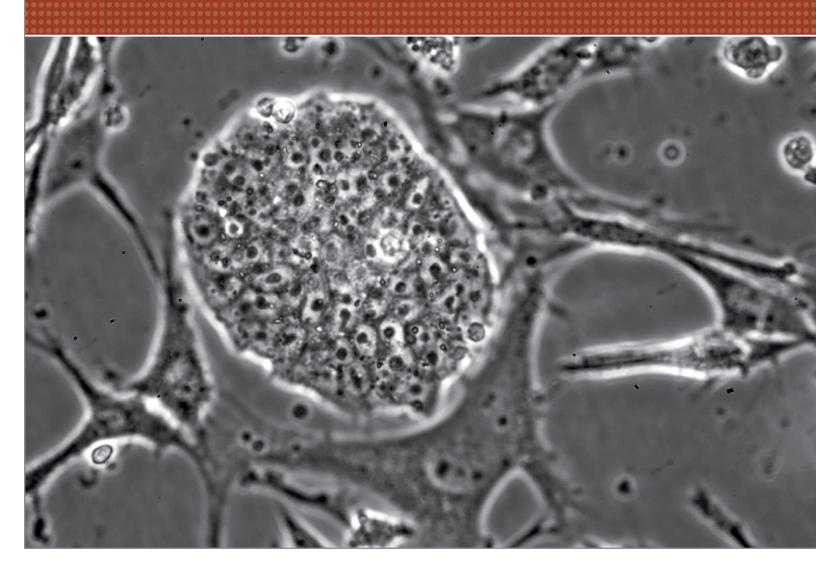
BALANCED SALT SOLUTIONS			
PRODUCT NAME	CATALOG #	QUANTITY	
D-PBS	37350	500 mL	
D-PBS, 10X	37354	500 mL	
HBSS, Ca ⁺⁺ & Mg ⁺⁺ free	37250	500 mL	
HBSS, without Phenol Red	37150	500 mL	

ENZYMES		
PRODUCT NAME	CATALOG #	QUANTITY
ACCUTASE™	07920	100 mL
Collagenase	07902	5 mL
Collagenase Type IV	07909	100 mL
Dispase (1 mg/mL)	07923	100 mL
DNase I (1 mg/mL)	07900	1 mL
Trypsin-EDTA (0.25%)	07901	500 mL
Trypsin-EDTA (0.05%)	07910	500 mL

Selected References

- Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156, 1981
- Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by terato carcinoma stem cells. Proc Natl Acad Sci USA 78: 7634, 1981
- 3. Wiles MV. Embryonic stem cell differentiation in vitro. Methods Enzymol 225: 900-918, 1993
- Thomas KR, Cappechi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503-512, 1987
- Rajewsky K, Gu H, Kuhn R, Beta UAK, Muller W, Roes J, Schwenk F. Conditional gene targeting. J Clin Invest 98: 600-603, 1996
- Nagy A, Rossant J. Targeted mutagenesis: analysis of phenotype without germ line transmission. J Clin Invest 97: 1360-1365, 1996
- 7. Marth JD. Recent advances in gene mutagenesis by site-directed recombination. J Clin Invest 97: 1999-2002, 1996
- Lewis J, Yang B, Detloff P, Smithies O. Gene modification via "plug and socket" gene targeting. J Clin Invest 97: 3-5, 1996
- 9. Jasin M, Moynahan ME, Richardson C. Targeted transgenesis. Proc Natl Acad Sci USA 93: 8804-8808, 1996
- Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9): e283, 2005
- Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 11: 723-732, 2006
- Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151-1165, 2006
- Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM, Orkin SH. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137-1150, 2006
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined fFactors. Cell 126: 663-676, 2006
- Okita K, Ichisaka T, Yamanaka S. Generation of germlinecompetent induced pluripotent stem cells. Nature 448: 313-317, 2007
- Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318-324, 2007

- Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55-70, 2007
- Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Humphries RK, Helagson CD. Correlation of murine embryonic stem cell gene expression profiles with functional measure of pluripotency. Stem Cells 23: 663 – 680, 2005
- Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13: 473-486, 1993
- Rathjen J, Rathjen PD. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Devel 11: 587-594, 2001
- Wobus AM, Guan K, Pich U. In vitro differentiation of embryonic stem cells and analysis of cellular phenotypes. Methods in Mol Biol 158: 263-286, 2001
- Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A. Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 1: 3-16, 2008
- Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol 59: 89-102, 1996
- Balconi G, Spagnuolo R, Dejana E. Development of endothelial cell lines from embryonic stem cells: A tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol 20: 1445-1451, 2000
- Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development 125: 725-732, 1998
- Feraud O, Vittet D. Murine embryonic stem cell in vitro differentiation: applications to the study of vascular development. Histool Histopathol 18: 191-199, 2003
- 27. Feraud O, Cao Y, Vittet D. Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Lab Invest 81: 1669-1681, 2001
- Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S. Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93: 1253-1263, 1999
- 29. Feraud O, Prandini MH, Vittet D. Vasculogenesis and angiogenesis from in vitro differentiation of mouse embryonic stem cells. Methods Enzymol 365: 214-228, 2003


Copyright © 2017 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, Scientists Helping Scientists, AggreWell and ES-Cult are trademarks of STEMCELL Technologies Canada Inc. All other trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.

Scientists Helping Scientists™ | WWW.STEMCELL.COM

TOLL-FREE PHONE 1 800 667 0322 • PHONE 1 604 877 0713 INFO@STEMCELL.COM • TECHSUPPORT@STEMCELL.COM FOR GLOBAL CONTACT DETAILS VISIT OUR WEBSITE

STEMCELL TECHNOLOGIES INC.'S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.

